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In the paper proposed two new types of the multiple granulation rough set models, where a target concept is approximated from
two different kinds of views by using the equivalence classes induced by multiple granulations. A number of important properties
of the two types of MGRS are investigated. From the properties, it can be found that Pawlak’s and Qian’s rough set models are
special instances of those of our MGRS. Moreover, several important measures are presented in two types of MGRS, such as rough
measure and quality of approximation. Furthermore, the relationship and difference are discussed carefully among Pawlak’s rough
set, Qian’s MGRS, and two new types of MGRS. In order to illustrate our multiple granulations rough set model, some examples
are considered, which are helpful for applying this theory in practical issues. One can get that the paper is meaningful both in the
theory and in application for the issue of knowledge reduction in complex information systems.

1. Introduction

Rough set theory proposed by Pawlak [1–3] is an extension of
the classical set theory and can be regarded as a soft comput-
ing tool to handle imprecision, vagueness, and uncertainty in
data analysis.The theory has found its successive applications
in the fields of pattern recognition [4], medical diagnosis
[5], data mining [6–8], conflict analysis [9], algebra [10–12],
and so on. Recently, the theory has generated a great deal of
interest among more and more researchers.

The classical rough set theory is based upon the clas-
sification mechanism, from which the classification can be
viewed as an equivalence relation, and knowledge granule
induced by the equivalence relation can be viewed as a
partition of the universe of discourse. In rough set theory,
two classical sets, so-called lower and upper approximations
or Pawlak’s rough approximations, a constructed and any
subset of a universe of discourse can be expressed by them.
In framework based on rough set theory, an attribute set is
viewed as a granular space, which partitions the universe into
some knowledge granules or elemental concepts. Partition,

granulation, and approximation are the methods widely used
in human reasoning [13, 14]. Rough setmethodology presents
a novel paradigm to deal with uncertainty and has been
applied to feature selection [15], knowledge reduction [16–
19], rule extraction [20–23], uncertainty reasoning [24, 25],
and granular computing [26–31].

In practice, due to the existence of uncertainty and
complexity of particular problem, the problem would not be
settled perfectly by means of classical rough set. Therefore,
it is vital to generalize the classical rough set model. To
overcome this limitation, classical rough sets have been
accomplished to several interesting and meaningful general
models in recent years, which include rough set model
based on tolerance relations [32], rough set model based on
neighborhood operators [33], Bayesian rough set model [34],
fuzzy rough set model [35], rough fuzzy set model [35], and
fuzzy probabilistic rough set model [3, 9, 19, 36–45].

On the other hand, information granules have played a
significant role in human cognitive processes. Information
granules refer to pieces, classes, and groups divided in
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accordancewith characteristics andperformances of complex
information in the process of human understanding, reason-
ing, and decision making. Such information processing is
called the information granulation. Zadeh firstly proposed
and discussed the issue of fuzzy information granulation
[46] in 1979. Then, the basic idea of information granulation
has been applied to many fields, such as theory of rough
sets [1, 2, 47], fuzzy sets [14, 48], and evidence theories
[49], and a growing number of scholars are concerned
about the discipline. In 1985, Hobbs proposed the concept
of granularity [50]. Zadeh firstly presented the concept of
granular computing [46] in the period from 1996 to 1997.
At this time, granular computing has played a more and
more important role in soft computing, knowledge discovery,
and data mining, and ones have achieved a large amount of
excellent results [19, 27, 30, 51–58].

However, in essence, the approximations in the past
approaches are still based on a singleton granulation induced
from an indiscernibility relation, which can be applied to
knowledge representation in distributive systems and groups
of intelligent agents. In view of granular computing, an
equivalence relation on the universe can be regarded as a
granulation, and a partition on the universe can be regarded
as a granulation space [56, 59]. Hence, the classical rough
set theory is based on a single granulation (only one equiv-
alence relation). Note that any attribute set can induce a
certain equivalence relation in an information system. In
the literature, to more widely apply the rough set theory
in practical applications, Qian et al. [60] extended Pawlak’s
single-granulation rough set model to a multi granulation
rough set model (MGRS), where the set approximations are
defined by multiple equivalence relations on the universe.

The main objective of this paper is to extend Pawlak’s
single-granulation rough set model and Qian’s multigranu-
lation rough set model (MGRS) to two new types of multiple
granulation rough set model, where the set approximations
are defined by using multiple equivalence relations on the
universe. The rest of the paper is organized as follows. Some
preliminary concepts in Pawlak’s rough set theory and main
concepts in Qian’s MGRS are briefly reviewed in Section 2.
In Sections 3 and 4, for an information system, based on
multiple equivalence relations, two new types of multiple
granulation rough setmodel are obtained, respectively, where
a target concept is approximated from two different kinds of
views by using the equivalence classes induced by multiple
granulations. And a number of important properties of the
two types of MGRS are investigated. It is shown that some
of the properties of Pawlak’s and Qian’s rough set theory are
special instances of those of our MGRS. Several important
measures are presented in two types of MGRS, such as
rough measure, quality of approximation. In Section 5, the
relationship and difference are discussed among Pawlak’s
rough set, Qian’s MGRS, and two new types of MGRS.
Furthermore, to illustrate ourmultiple granulations rough set
model, some examples are presented, which are helpful for
applying this theory in practical issues. And finally, the paper
is concluded by a summary and outlook for further research
in Section 6.

2. Preliminaries

The following recalls necessary concepts and preliminaries
required in the sequel of our work. Detailed description of
the theory can be found in the literatures [1–3, 19, 60].

2.1. Pawlak’s Rough Set. The notion of information sys-
tem (sometimes called data tables, attribute-value systems,
knowledge representation systems, etc.) provides a conve-
nient tool for the representation of objects in terms of their
attribute values.

An information system is an ordered quadruple I =

(𝑈, 𝐴𝑇,𝑉, 𝑓), where

(i) 𝑈 = {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
} is a nonempty finite set of objects,

(ii) 𝐴𝑇 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
} is a nonempty finite set of

attributes,
(iii) 𝑉 = ⋃

𝑎∈𝐴𝑇
𝑉
𝑎
and 𝑉

𝑎
is a domain of attribute 𝑎,

(iv) 𝑓 : 𝑈 × 𝐴𝑇 → 𝑉 is a function such that 𝑓(𝑢, 𝑎) ∈
𝑉
𝑎
, for every 𝑎 ∈ 𝐴𝑇, 𝑥 ∈ 𝑈, called an information

function.

An information system with the decision is a special
case of information systems in which, among the attributes,
we distinguish the ones called decision attribute. The other
attributes are called condition attributes. Therefore, I =

(𝑈, 𝐶∪{𝑑}, 𝑉, 𝑓) and𝐶∩{𝑑} = 𝜙, where sets𝐶 and {𝑑} are the
condition attributes and the decision attribute, respectively.

LetI = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information system, for 𝐴 ⊆
𝐴𝑡, and denote

𝑅
𝐴
= {(𝑢, 𝑣) ∈ 𝑈 × 𝑈 | 𝑓 (𝑢, 𝑎) = 𝑓 (𝑣, 𝑎) , ∀𝑎 ∈ 𝐴} , (1)

then 𝑅
𝐴
is reflexive, symmetric, and transitive. So it is an

equivalence relation on 𝑈.
Moreover, denote

[𝑢]𝐴
= {𝑣 ∈ 𝑈 | (𝑢, 𝑣) ∈ 𝑅

𝐴
} ,

𝑈

𝐴

= {[𝑢]𝐴
, ∀𝑢 ∈ 𝑈} ,

(2)

then [𝑢]
𝐴
is called the equivalence class of𝑢, and𝑈/𝐴 is called

the equivalence class set of 𝑈. For equivalence classes and
equivalence relations, the following properties hold.

(i) If 𝐵 ⊆ 𝐴, then 𝑅
𝐴
⊆ 𝑅
𝐵
.

(ii) If 𝐵 ⊆ 𝐴, then [𝑢]
𝐴
⊆ [𝑢]
𝐵
.

(iii) If 𝑣 ∈ [𝑢]
𝐴
, then [𝑢]

𝐴
= [𝑣]
𝐴
.

For any subset 𝑋 ⊆ 𝑈 and 𝐴 ⊆ 𝐴𝑇 in information
system I = (𝑈, 𝐴𝑇,𝑉, 𝑓), the Pawlak’s lower and upper
approximations of 𝑋 with respect to equivalence relation 𝑅

𝐴

could be defined as follows (see [1–3, 19]):

𝑅
𝐴
(𝑋) = {𝑢 ∈ 𝑈 | [𝑢]𝐴

⊆ 𝑋} ,

𝑅
𝐴
(𝑋) = {𝑢 ∈ 𝑈 | [𝑢]𝐴

∩ 𝑋 ̸= 0} .

(3)

The area of uncertainty or boundary is defined as

Bnd
𝐴
(𝑋) = 𝑅

𝐴
(𝑋) − 𝑅

𝐴
(𝑋) . (4)



ISRN Applied Mathematics 3

Tomeasure the imprecision and roughness of a rough set,
Pawlak recommended that𝑋 ̸= 0 has the ratio

𝜌
𝐴
(𝑋) = 1 −







𝑅
𝐴
(𝑋)













𝑅
𝐴
(𝑋)







, (5)

which is called the rough measure of𝑋 by equivalence 𝑅
𝐴
.

Furthermore, for an information systemwith the decision
I = (𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓) and 𝐴 ⊆ 𝐶, a frequently applied
measure for the situation is the quality of approximation of
𝑅
𝑑
by 𝑅
𝐴
, also called the degree of dependency. It is defined

as

𝛾 (𝐴, 𝑑) =

1

|𝑈|

𝑘

∑

𝑗=1

𝑅
𝐴
(𝐷
𝑗
) , (6)

where 𝑅
𝑑
= {(𝑢, 𝑣) ∈ 𝑈 × 𝑈 | 𝑔(𝑢, 𝑑) = 𝑔(𝑣, 𝑑)}, and 𝑈/𝑑 =

{[𝑢]
𝑑
, for all 𝑢 ∈ 𝑈} = {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑘
}.

2.2. Qian’s Multiple Granulation Rough Set. In the rough
set model MGRS, unlike Pawlak’s rough set theory, a target
concept is approximated throughmultiple partitions induced
by multiple equivalence relations [60]. In the following, we
recall the relevant concepts aboutMGRS, and the description
in detail can be found in [60].

Suppose that I = (𝑈,𝐴𝑇,𝑉, 𝑓) is an information
system, and 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
are 𝑚-attribute subsets. A lower

approximation and an upper approximation of 𝑋 are related
to 𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑚
by the following:

𝑚

∑

𝑖=1

𝑃
𝑖
𝑋 = ⋃{𝑢 | [𝑢]𝑃𝑖

⊆ 𝑋, for some 𝑖 ≤ 𝑚} ,

𝑚

∑

𝑖=1

𝑃
𝑖
𝑋 =∼

𝑚

∑

𝑖=1

𝑃
𝑖
(∼ 𝑋) .

(7)

Similarly, the boundary region inMGRS can be expressed
as

Bnd
∑
𝑚

𝑖=1
𝑃𝑖
(𝑋) =

𝑚

∑

𝑖=1

𝑃
𝑖
𝑋 \

𝑚

∑

𝑖=1

𝑃
𝑖
𝑋. (8)

Figure 1 shows the difference between Pawlak’s rough set
model and the MGRS model.

From the figure, we can find that the bias region is
the lower approximation of a set 𝑋 obtained by a single
granulation 𝑃 ∪ 𝑄, which are expressed by the equivalence
classed in the quotient set 𝑈/(𝑃 ∪ 𝑄), and the shadow region
is the lower approximation of𝑋 induced by two granulations
𝑃 + 𝑄, which are characterized by the equivalence classes in
quotient set 𝑈/𝑃 and the quotient set 𝑈/𝑄.

3. The First Type of Multiple
Granulation Rough Set

In this section, we will propose the first type of multiple
granulation rough set.

Lower approximation under a granulation
Lower approximation under multigranulations

X
(x)P

(x)Q

(y)Q

(y)P

U

Figure 1: Difference between Pawlak’s rough set model and MGRS.

3.1. The First Type of Two Granulation Rough Set. We first
discuss the first type of two granulation approximations
of a target set by using two equivalence relations in an
information system.

Definition 1. LetI = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information system
and 𝐵,𝐴 ⊆ 𝐴𝑇. The operators 𝐹𝑅

𝐴+𝐵
and 𝐹𝑅

𝐴+𝐵
: P(𝑈) →

P(𝑈) are defined as follows. For all𝑋 ∈ P(𝑈),

𝐹𝑅
𝐴+𝐵
(𝑋) = {𝑢 | [𝑢]𝐴

⊆ 𝑋 or [𝑢]𝐵 ⊆ 𝑋} ,

𝐹𝑅
𝐴+𝐵
(𝑋) = {𝑢 | [𝑢]𝐴

∩ 𝑋 ̸= 0, [𝑢]𝐵
∩ 𝑋 ̸= 0} .

(9)

We call them the first type of two granulation lower and
upper approximation operators, and we call 𝐹𝑅

𝐴+𝐵
(𝑋) and

𝐹𝑅
𝐴+𝐵
(𝑋) the first type of two granulation lower approxima-

tion set and upper approximation of𝑋, respectively.
Moreover, if 𝐹𝑅

𝐴+𝐵
(𝑋) ̸= 𝐹𝑅

𝐴+𝐵
(𝑋), we say that 𝑋 is the

first type of rough set with respect to the two granulation
spaces 𝐴 and 𝐵. Otherwise, we say that 𝑋 is the first type of
a definable set with respect to the two granulation spaces 𝐴
and 𝐵.

The area of uncertainty or boundary region of this rough
set is defined as

Bnd𝐹
𝑅𝐴+𝐵
(𝑋) = 𝐹𝑅

𝐴+𝐵
(𝑋) − 𝐹𝑅

𝐴+𝐵
(𝑋) . (10)

It can be found that the first two granulation rough set will
be Pawlak’s rough set when two granulation spaces 𝐴 and 𝐵
satisfy 𝐴 = 𝐵. To describe conveniently in our context, we
express the first type of two granulation rough set by using
the 1st TGRS.

In Qian’s MGRS, the upper approximation set is char-
acterized by the complementary set of the lower approxi-
mation of the complementary target concept 𝑋, which is
not consistent with Pawlak’s rough set. However, by the
previous definition, it can be seen that the 1st TGRS lower
and upper approximations are consistent with Pawlak’s rough
set. Furthermore, ones can find that the 1st TGRS lower
and upper approximations are defined through using the
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X

FRA+B(X)

FRA+B(X)
RA

RB

U

Figure 2: The 1st TGRS in an information system.

equivalence classes induced by multiequivalence relations in
an information system, whereas Pawlak’s lower and upper
approximations are represented via those derived by only on
equivalence relation.

One can understand the first two granulation rough
set and show the difference between the Qian’s MGRS and
Pawlak’s rough set through Figure 2.

Just from Definition 1, we can obtain the following prop-
erties in the 1st TGRS in an information system.

Proposition 2. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵,𝐴 ⊆ 𝐴𝑇 and 𝑋 ⊆ 𝑈. Then the following properties
hold.

(FL
1
) 𝐹𝑅
𝐴+𝐵
(𝑋) ⊆ 𝑋 (Contraction),

(FU
1
) 𝐹𝑅
𝐴+𝐵
(𝑋) ⊇ 𝑋 (Extension),

(FL
2
) 𝐹𝑅
𝐴+𝐵
(∼ 𝑋) =∼ 𝐹𝑅

𝐴+𝐵
(𝑋) (Duality),

(FU
2
) 𝐹𝑅
𝐴+𝐵
(∼ 𝑋) =∼ 𝐹𝑅

𝐴+𝐵
(𝑋) (Duality),

(FL
3
) 𝐹𝑅
𝐴+𝐵
(0) = 0 (Normality),

(FU
3
) 𝐹𝑅
𝐴+𝐵
(0) = 0 (Normality),

(FL
4
) 𝐹𝑅
𝐴+𝐵
(𝑈) = 𝑈 (Conormality),

(FU
4
) 𝐹𝑅
𝐴+𝐵
(𝑈) = 𝑈 (Conormality),

(FL
5
) 𝐹𝑅
𝐴+𝐵
(𝑋) = 𝐹𝑅

𝐵+𝐴
(𝑋) (Commutativity),

(FU
5
) 𝐹𝑅
𝐴+𝐵
(𝑋) = 𝐹𝑅

𝐵+𝐴
(𝑋) (Commutativity).

Proof. It is obvious that all terms hold when 𝐴 = 𝐵. When
𝐴 ̸= 𝐵, the proposition can be proved as follows.

(FL
1
) For any 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(𝑋), it can be known that [𝑢]

𝐴
⊆

𝑋 or [𝑢]
𝐵
⊆ 𝑋 by Definition 1. However, 𝑢 ∈ [𝑢]

𝐴
and 𝑢 ∈

[𝑢]
𝐵
. So we can have 𝑢 ∈ 𝑋. Hence, 𝐹𝑅

𝐴+𝐵
(𝑋) ⊆ 𝑋.

(FU
1
) For any 𝑢 ∈ 𝑋, we have 𝑢 ∈ [𝑢]

𝐴
and 𝑢 ∈ [𝑢]

𝐵
. So

[𝑢]
𝐴
∩ 𝑋 ̸= 0 and [𝑢]

𝐵
∩ 𝑋 ̸= 0, that is to say, 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(𝑋).

Hence,𝑋 ⊆ 𝐹𝑅
𝐴+𝐵
(𝑋).

(FL
2
) For any 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(∼ 𝑋), then

𝑢 ∈ 𝐹𝑅
𝐴+𝐵
(∼ 𝑋) ⇐⇒ [𝑢]𝐴

⊆∼ 𝑋, or [𝑢]𝐵 ⊆∼ 𝑋,

⇐⇒ [𝑢]
𝐴
∩ 𝑋 = 0, or [𝑢]𝐵 ∩ 𝑋 = 0,

⇐⇒ 𝑢 ∉ 𝐹𝑅
𝐴+𝐵
(𝑋) ,

⇐⇒ 𝑢 ∈∼ 𝐹𝑅
𝐴+𝐵
(𝑋) .

(11)

Hence, 𝐹𝑅
𝐴+𝐵
(∼ 𝑋) =∼ 𝐹𝑅

𝐴+𝐵
(𝑋).

(FU
2
) By (FL

2
), we have 𝐹𝑅

𝐴+𝐵
(𝑋) =∼ 𝐹𝑅

𝐴+𝐵
(∼ 𝑋). So it

can be obtain that ∼ 𝐹𝑅
𝐴+𝐵
(𝑋) = 𝐹𝑅

𝐴+𝐵
(∼ 𝑋).

(FL
3
) From (FL

1
), we have 𝐹𝑅

𝐴+𝐵
(0) ⊆ 0. besides, it is

well known that 0 ⊆ 𝐹𝑅
𝐴+𝐵
(0). So, 𝐹𝑅

𝐴+𝐵
(0) = 0.

(FU
3
) If 𝐹𝑅

𝐴+𝐵
(0) ̸= 0, then there must exist a 𝑢 ∈

𝐹𝑅
𝐴+𝐵
(0). So we can find that [𝑢]

𝐴
∩ 0 ̸= 0 and [𝑢]

𝐵
∩ 0 ̸= 0.

Obviously, this is a contradiction. Thus, 𝐹𝑅
𝐴+𝐵
(0) = 0.

(FL
4
) 𝐹𝑅
𝐴+𝐵
(𝑈) = 𝐹𝑅

𝐴+𝐵
(∼ 0) =∼ 𝐹𝑅

𝐴+𝐵
(0) =∼ 0 = 𝑈.

(FU
4
) 𝐹𝑅
𝐴+𝐵
(𝑈) = 𝐹𝑅

𝐴+𝐵
(∼ 0) =∼ 𝐹𝑅

𝐴+𝐵
(0) =∼ 0 = 𝑈.

(FL
5
) and (FU

5
) can be proved directly by Definition 1.

In order to discover the relationship between the 1st
TGRS approximations of a single set and the 1st TGRS
approximations of two sets described on the universe, the
following properties are given.

Proposition 3. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system,𝐵,𝐴 ⊆ 𝐴𝑇 and𝑋,𝑌 ⊆ 𝑈.Then the following properties
hold.

(FL
6
) 𝐹𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋) ∩ 𝐹𝑅

𝐴+𝐵
(𝑌) (L-

Multiplication),

(FU
6
) 𝐹𝑅
𝐴+𝐵
(𝑋 ∪ 𝑌) ⊇ 𝐹𝑅

𝐴+𝐵
(𝑋) ∪ 𝐹𝑅

𝐴+𝐵
(𝑌) (L-

Addition),
(FL
7
) 𝑋 ⊆ 𝑌 ⇒ 𝐹𝑅

𝐴+𝐵
(𝑋) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑌) (Granularity),

(FU
7
) 𝑋 ⊆ 𝑌 ⇒ 𝐹𝑅

𝐴+𝐵
(𝑋) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑌) (Granularity),

(FL
8
) 𝐹𝑅
𝐴+𝐵
(𝑋 ∪ 𝑌) ⊇ 𝐹𝑅

𝐴+𝐵
(𝑋) ∪ 𝐹𝑅

𝐴+𝐵
(𝑌) (U-

Addition),
(FU
8
) 𝐹𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋) ∩ 𝐹𝑅

𝐴+𝐵
(𝑌) (U-

Multiplication).

Proof. It is obvious that all terms hold when 𝐴 = 𝐵 or 𝑋 =
𝑌. When 𝐴 ̸= 𝐵 and 𝑋 ̸=𝑌, the proposition can be proved as
follows.

(FL
6
) For any 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(𝑋 ∩ 𝑌), we have that [𝑢]

𝐴
⊆

(𝑋 ∩ 𝑌) or [𝑢]
𝐵
⊆ (𝑋 ∩ 𝑌) by Definition 1. Then, it can be

obtained that [𝑢]
𝐴
⊆ 𝑋 and [𝑢]

𝐴
⊆ 𝑌 hold at the same time

or [𝑢]
𝐵
⊆ 𝑋 and [𝑢]

𝐵
⊆ 𝑌 hold at the same time. So, not

only [𝑢]
𝐴
⊆ 𝑋 or [𝑢]

𝐵
⊆ 𝑋 hold, but [𝑢]

𝐴
⊆ 𝑌 or [𝑢]

𝐵
⊆ 𝑌
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hold at the same time. That is to say that 𝑢 ∈ 𝐹𝑅
𝐴+𝐵
(𝑋) and

𝑢 ∈ 𝐹𝑅
𝐴+𝐵
(𝑌), that is, 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(𝑋) ∩ 𝐹𝑅

𝐴+𝐵
(𝑌).

Hence, 𝐹𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋) ∩ 𝐹𝑅

𝐴+𝐵
(𝑌).

(FU
6
) For any 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(𝑋) ∪ 𝐹𝑅

𝐴+𝐵
(𝑌), we have 𝑢 ∈

𝐹𝑅
𝐴+𝐵
(𝑋) or 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(𝑌). Then [𝑢]

𝐴
∩ 𝑋 ̸= 0 and [𝑢]

𝐵
∩

𝑋 ̸= 0 hold at the same time or [𝑢]
𝐴
∩ 𝑌 ̸= 0 and [𝑢]

𝐵
∩ 𝑌 ̸= 0

hold at the same time. So, not only [𝑢]
𝐴
∩ (𝑋 ∪ 𝑌) ̸= 0 hold,

but [𝑢]
𝐵
∩ (𝑋 ∪ 𝑌) ̸= 0 hold. That is to say 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(𝑋 ∪ 𝑌).

Hence, 𝐹𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊇ 𝐹𝑅

𝐴+𝐵
(𝑋) ∪ 𝐹𝑅

𝐴+𝐵
(𝑌).

(FL
7
) Since 𝑋 ⊆ 𝑌, one can have 𝑋 ∩ 𝑌 = 𝑋. Then,

𝐹𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) = 𝐹𝑅

𝐴+𝐵
(𝑋). Besides, it can be found that

𝐹𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋) ∩ 𝐹𝑅

𝐴+𝐵
(𝑌) by (FL

6
). So, we can

obtain that 𝐹𝑅
𝐴+𝐵
(𝑋) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋) ∩ 𝐹𝑅

𝐴+𝐵
(𝑌), that is to say

that 𝐹𝑅
𝐴+𝐵
(𝑋) = 𝐹𝑅

𝐴+𝐵
(𝑋) ∩ 𝐹𝑅

𝐴+𝐵
(𝑌).

Thus, 𝐹𝑅
𝐴+𝐵
(𝑋) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑌).

(FU
7
) Since 𝑋 ⊆ 𝑌, one can have 𝑋 ∪ 𝑌 = 𝑌. Then,

𝐹𝑅
𝐴+𝐵
(𝑋 ∪ 𝑌) = 𝐹𝑅

𝐴+𝐵
(𝑌). In addition, it can be found that

𝐹𝑅
𝐴+𝐵
(𝑋 ∪ 𝑌) ⊇ 𝐹𝑅

𝐴+𝐵
(𝑋) ∪ 𝐹𝑅

𝐴+𝐵
(𝑌) by (FU

6
). So, we can

obtain that 𝐹𝑅
𝐴+𝐵
(𝑌) ⊇ 𝐹𝑅

𝐴+𝐵
(𝑋) ∪ 𝐹𝑅

𝐴+𝐵
(𝑌), that is to say

that 𝐹𝑅
𝐴+𝐵
(𝑌) = 𝐹𝑅

𝐴+𝐵
(𝑋) ∪ 𝐹𝑅

𝐴+𝐵
(𝑌).

Thus, 𝐹𝑅
𝐴+𝐵
(𝑋) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑌).

(FU
8
) Since𝑋 ⊆ 𝑋∪𝑌 and 𝑌 ⊆ 𝑋∪𝑌, by (FL

7
) it can be

obtained that

𝐹𝑅
𝐴+𝐵
(𝑋) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋 ∪ 𝑌) ,

𝐹𝑅
𝐴+𝐵
(𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋 ∪ 𝑌) .

(12)

So, we have 𝐹𝑅
𝐴+𝐵
(𝑋) ∪ 𝐹𝑅

𝐴+𝐵
(𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋 ∪ 𝑌).

(FU
8
) Since𝑋∩𝑌 ⊆ 𝑋 and𝑋∩𝑌 ⊆ 𝑌, by (FU

7
) it can be

obtained that

𝐹𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋) ,

𝐹𝑅
𝐴+𝐵
(𝑌 ∩ 𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑌) .

(13)

So, we have 𝐹𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋) ∩ 𝐹𝑅

𝐴+𝐵
(𝑋).

The proposition was proved.

Here, we employ an example to illustrate the previos
concepts and properties with respect to the 1st TGRS.

Example 4. Table 1 depicts an information system containing
some information about an emporium investment project.
Locus, investment, and population density are the conditional
attributes of the systems, whereas Decision is the decision
attribute. In the sequel, 𝐿, 𝐼, 𝑃, and 𝐷 will stand for locus,
investment, population density and {Decision}, respectively.
The domains are as follows: 𝑉

𝐿
= {B—Bad, C—Common,

G—Good, G+—Better}, 𝑉
𝐿
= {H—High, L—Low}, 𝑉

𝑃
=

{B—Big, S—Small, M—Medium}, and 𝑉
𝐷
= {Y—Yes, N—

No}.
From the table, we can find that

𝑅
𝐿
= {{𝑢
1
, 𝑢
7
} , {𝑢
2
, 𝑢
8
} , {𝑢
3
, 𝑢
4
} , {𝑢
5
, 𝑢
6
}} ,

𝑅
𝑃
= {{𝑢
1
, 𝑢
2
} , {𝑢
3
, 𝑢
4
, 𝑢
5
} , {𝑢
6
, 𝑢
7
, 𝑢
8
}} ,

𝑅
𝐿∪𝑃
= {{𝑢
1
} , {𝑢
2
} , {𝑢
3
, 𝑢
4
} , {𝑢
5
} , {𝑢
6
} , {𝑢
7
} , {𝑢
8
}} .

(14)

And, if we take 𝑋 = {𝑢
1
, 𝑢
2
, 𝑢
6
, 𝑢
8
}, then by computing we

have

𝐹𝑅
𝐿+𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
8
} ,

𝐹𝑅
𝐿+𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
7
, 𝑢
8
} .

(15)

However, the lower approximation and upper approxima-
tion of𝑋 based on Pawlak’s rough set are

𝑅
𝐿
(𝑋) = {𝑢

2
, 𝑢
8
} ,

𝑅
𝐿
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} ,

𝑅
𝑃
(𝑋) = {𝑢

1
, 𝑢
2
} ,

𝑅
𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
7
, 𝑢
8
} ,

𝑅
𝐿∪𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} ,

𝑅
𝐿∪𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} .

(16)

Obviously, one can check the following properties.

𝑅
𝐿
(𝑋) ∪ 𝑅

𝑃
(𝑋) = 𝐹𝑅

𝐿+𝑃
(𝑋) ,

𝑅
𝐿
(𝑋) ∩ 𝑅

𝑃
(𝑋) = 𝐹𝑅

𝐿+𝑃
(𝑋) ,

𝐹𝑅
𝐿+𝑃
(𝑋) ⊆ 𝑅

𝐿∪𝑃
(𝑋) ⊆ 𝑋 ⊆ 𝑅

𝐿∪𝑃
(𝑋) ⊆ 𝐹𝑅

𝐿+𝑃
(𝑋) .

(17)

3.2. The First Type of Multiple Granulation Rough Set. In
this subsection, we will consider the first type of multiple
granulation approximations of a target set by using multiple
equivalence relations in an information system.

Definition 5. LetI = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information system,
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑠
⊆ 𝐴𝑇 be attribute subsets (𝑠 ≤ 2|𝐴𝑇|), and

𝑅
𝐴1
, 𝑅
𝐴2
, . . . , 𝑅

𝐴𝑠
be equivalence relations, respectively. The

operators 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖

and 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
: P(𝑈) → P(𝑈) are

defined as follows. For all𝑋 ∈ P(𝑈),

𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = {𝑢 |

𝑚

⋁

𝑖=1

([𝑢]𝐴𝑖
⊆ 𝑋)} ,

𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = {𝑢 |

𝑚

⋀

𝑖=1

([𝑢]𝐴𝑖
∩ 𝑋 ̸= 0)} ,

(18)

where “∨” means “some”, and “∧” means “all.” We call them
the first type ofmultiple granulation lower and upper approx-
imation operators, and we call 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) and 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)

the first type of multiple granulation lower approximation set
and upper approximation of𝑋, respectively.

Moreover, if 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ̸= 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋), we say that 𝑋 is

the first type of rough set with respect tomultiple granulation
spaces 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑠
. Otherwise, we say that 𝑋 is the

first type of definable set with respect to these multiple
granulation spaces.
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Table 1: An information system about emporium investment project.

Project Locus Investment Population density Decision
𝑢
1

C L B N
𝑢
2

G+ H B Y
𝑢
3

B L S N
𝑢
4

B H S N
𝑢
5

G L S N
𝑢
6

G H M Y
𝑢
7

C H M Y
𝑢
8

G+ H M Y

Similarly, the area of uncertainty or boundary region of
this rough set is defined as

Bnd𝐹
𝑅
∑
𝑠

𝑖=1
𝐴𝑖

(𝑋) = 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) − 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) . (19)

To describe conveniently the ideas in our context, we
express the first type of multiple granulation rough set by
using the 1st MGRS. Moreover, one can obtain the following
properties of the 1st MGRS approximations.

Proposition 6. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . 𝑠, and𝑋 ⊆ 𝑈. Then the following

properties hold.

(FL
1
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑋 (Contraction),

(FU
1
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊇ 𝑋 (Extension),

(FL
2
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋) =∼ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) (Duality),

(FU
2
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(∼ 𝑋) =∼ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) (Duality),

(FL
3
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(0) = 0 (Normality),

(FU
3
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(0) = 0 (Normality),

(FL
4
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑈) = 𝑈 (Conormality),

(FU
4
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑈) = 𝑈 (Conormality),

(FL
5
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = 𝐹𝑅

𝐵+𝐴
(𝑋) (Commutativity),

(FU
5
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = 𝐹𝑅

𝐵+𝐴
(𝑋) (Commutativity).

Proof. The proof of these items is similar to Proposition 2.

Proposition 7. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . 𝑠 and 𝑋,𝑌 ⊆ 𝑈. Then the

following properties hold.

(FL
6
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋 ∩ 𝑌) ⊆ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ∩ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌) (L-

Multiplication),
(FU
6
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋 ∪ 𝑌) ⊇ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ∪ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌) (L-

Addition),
(FL
7
) 𝑋 ⊆ 𝑌 ⇒ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆

𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑌) (Granularity),

(FU
7
) 𝑋 ⊆ 𝑌 ⇒ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆

𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑌) (Granularity),

(FL
8
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋 ∪ 𝑌) ⊇ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ∪ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌) (U-

Addition),
(FU
8
) 𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋 ∩ 𝑌) ⊆ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ∩ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌) (U-

Multiplication).

Proof. The proof of these items is similar to Proposition 3.

Next, we will investigate several elementary measures in
the 1st MGRS and their properties.

Uncertainty of a set (category) is due to the existence of
a borderline region. The bigger the borderline region of a set
is, the lower the accuracy of the set is (and vice versa). To
more precisely express this idea, we introduce the accuracy
measure to the 1st MGRS as follows.

Definition 8. LetI = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information system,
𝐴
𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . 𝑠, and 𝑋 ⊆ 𝑈. The 1st rough measure of

𝑋 by ∑𝑠
𝑖=1
𝐴
𝑖
is defined as

𝜌

𝐹

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = 1 −









𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)















𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)







,
(20)

where𝑋 ̸= 0.

From the definitions, one can derive the following prop-
erties.

Proposition 9. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . 𝑠, and 𝑋 ⊆ 𝑈. Then

𝜌
𝐴𝑖
(𝑋) ≥ 𝜌

𝐹

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≥ 𝜌

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋) . (21)

Proof. By Corollary 32, we have

𝑅
𝐴𝑖
(𝑋) ⊆ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ,

𝑅
𝐴𝑖
(𝑋) ⊇ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) .

(22)

And by Corollary 40, we have

𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑅

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋) ,

𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊇ 𝑅

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋) .

(23)
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So, the following hold:







𝑅
𝐴𝑖
(𝑋)














𝑅
𝐴𝑖
(𝑋)







≤









𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)















𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)







≤









𝑅
∪
𝑠

𝑖=1
𝐴𝑖
(𝑋)















𝑅
∪
𝑠

𝑖=1
𝐴𝑖
(𝑋)







.
(24)

Hence, by the Definition 8, we have

𝜌
𝐴𝑖
(𝑋) ≥ 𝜌

𝐹

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≥ 𝜌

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋) . (25)

The proof was completed.

Example 10 (continued from Example 4). Computing the 1st
rough measures of 𝑋 = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} by using the results in

Example 4, it follows that

𝜌
𝐿
(𝑋) = 1 −







𝑅
𝐿
(𝑋)













𝑅
𝐿
(𝑋)







=

2

3

,

𝜌
𝑃
(𝑋) = 1 −







𝑅
𝑃
(𝑋)













𝑅
𝑃
(𝑋)







=

3

5

,

𝜌
𝐿∪𝑃
(𝑋) = 1 −







𝑅
𝐿∪𝑃
(𝑋)













𝑅
𝐿∪𝑃
(𝑋)







= 0,

𝜌

𝐹

𝐿+𝑃
(𝑋) = 1 −







𝐹𝑅
𝐿+𝑃
(𝑋)













𝐹𝑅
𝐿+𝑃
(𝑋)







=

2

5

.

(26)

Clearly, it follows from the earlier computation that

𝜌
𝐿
(𝑋) ≥ 𝜌

𝐹

𝐿+𝑃
(𝑋) ≥ 𝜌

𝐿∪𝑃
(𝑋) ,

𝜌
𝑃
(𝑋) ≥ 𝜌

𝐹

𝐿+𝑃
(𝑋) ≥ 𝜌

𝐿∪𝑃
(𝑋) .

(27)

Note that the rough measure of a target concept defined
by usingmultiple granulations is alwaysmuch better than that
defined by using a single granulation, which is suitable for
more precisely characterizing a target concept and problem
solving according to user requirements.

Definition 11. Let I = (𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓) be a decision table,
𝐴
𝑖
⊆ 𝐶, 𝑖 = 1, 2, . . . , 𝑠, and, {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑘
} be all decision

classes induced by decision attribute 𝑑. Approximation qual-
ity of 𝑑 by ∑𝑠

𝑖=1
𝐴
𝑖
, called the 1st degree of dependence, is

defined as

𝛾
𝐹
(

𝑠

∑

𝑖=1

𝐴
𝑖
, 𝑑) =

1

|𝑈|

𝑘

∑

𝑗=1

(









𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
)









) . (28)

This measure can be used to evaluate the deterministic
part of the rough set description of 𝑈/𝑑 by counting those
objects which can be reclassified as blocks of 𝑈/𝑑 with the
knowledge given by∑𝑠

𝑖=1
𝐴
𝑖
. Moreover, we have the following

properties with respect to the above definition.

Proposition 12. LetI = (𝑈, 𝐶∪{𝑑}, 𝑉, 𝑓) be a decision table,
𝐴
𝑖
⊆ 𝐶, 𝑖 = 1, 2, . . . , 𝑠, and let {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑘
} be all decision

classes induced by decision attribute d. Then

𝛾 (𝐴
𝑖
, 𝑑) ≤ 𝛾

𝐹
(

𝑠

∑

𝑖=1

𝐴
𝑖
, 𝑑) ≤ 𝛾(

𝑠

⋃

𝑖=1

𝐴
𝑖
, 𝑑) . (29)

Proof. For every𝐷
𝑗
, 𝑗 = 1, 2, . . . , 𝑘, by Corollaries 32 and 40,

we have

𝑅
𝐴𝑖
(𝐷
𝑗
) ⊆ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
) ⊆ 𝑅
∪
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
) . (30)

So,







𝑅
𝐴𝑖
(𝐷
𝑗
)








≤









𝐹𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
)









≤









𝑅
∪
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
)









. (31)

Hence, by Definition 11, we have

𝛾 (𝐴
𝑖
, 𝑑) ≤ 𝛾

𝐹
(

𝑠

∑

𝑖=1

𝐴
𝑖
, 𝑑) ≤ 𝛾(

𝑠

⋃

𝑖=1

𝐴
𝑖
, 𝑑) . (32)

The proof was completed.

Example 13 (continued from Example 4). Computing the
degree of dependence of𝑋 = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
}.

From Table 1, we can have 𝑈/𝐷 = {𝐷
𝑌
, 𝐷
𝑁
} and

𝐷
𝑌
= {𝑢
2
, 𝑢
6
, 𝑢
7
, 𝑢
8
} ,

𝐷
𝑁
= {𝑢
1
, 𝑢
3
, 𝑢
4
, 𝑢
5
} .

(33)

Moreover, the following can be computed by Table 1 and
the results of Example 4,

𝑅
𝐿
(𝐷
𝑌
) = {𝑢

2
, 𝑢
8
} ,

𝑅
𝑃
(𝐷
𝑌
) = {𝑢

6
, 𝑢
7
, 𝑢
8
} ,

𝑅
𝐿∪𝑃
(𝐷
𝑌
) = {𝑢

2
, 𝑢
6
, 𝑢
7
, 𝑢
8
} ,

𝐹𝑅
𝐿+𝑃
(𝐷
𝑌
) = {𝑢

2
, 𝑢
6
, 𝑢
7
, 𝑢
8
} ,

𝑅
𝐿
(𝐷
𝑁
) = {𝑢

3
, 𝑢
4
} ,

𝑅
𝑃
(𝐷
𝑁
) = {𝑢

3
, 𝑢
4
, 𝑢
5
} ,

𝑅
𝐿∪𝑃
(𝐷
𝑁
) = {𝑢

1
, 𝑢
3
, 𝑢
4
, 𝑢
5
} ,

𝐹𝑅
𝐿+𝑃
(𝐷
𝑁
) = {𝑢

3
, 𝑢
4
, 𝑢
5
} .

(34)

So, we have

𝛾 (𝐿,𝐷) =

1

|𝑈|

(







𝑅
𝐿
(𝐷
𝑌
)







+







𝑅
𝐿
(𝐷
𝑁
)







) =

1

2

,

𝛾 (𝑃,𝐷) =

1

|𝑈|

(







𝑅
𝑃
(𝐷
𝑌
)







+







𝑅
𝑃
(𝐷
𝑁
)







) =

3

4

,

𝛾 (𝐿 ∪ 𝑃,𝐷) =

1

|𝑈|

(







𝑅
𝐿∪𝑃
(𝐷
𝑌
)







+







𝑅
𝐿∪𝑃
(𝐷
𝑁
)







) = 1,

𝛾
𝐹
(𝐿 + 𝑃,𝐷) =

1

|𝑈|

(







𝐹𝑅
𝐿+𝑃
(𝐷
𝑌
)







+







𝐹𝑅
𝐿+𝑃
(𝐷
𝑁
)







) =

7

8

.

(35)

Hence, it can be found that

𝛾 (𝐿,𝐷) ≤ 𝛾
𝐹
(𝐿 + 𝑃,𝐷) ≤ 𝛾 (𝐿 ∪ 𝑃,𝐷) ,

𝛾 (𝑃,𝐷) ≤ 𝛾
𝐹
(𝐿 + 𝑃,𝐷) ≤ 𝛾 (𝐿 ∪ 𝑃,𝐷) .

(36)
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4. The Second Type of Multiple
Granulation Rough Set

In this section, we will consider another multiple granulation
rough set.

4.1. The Second Type of Two Granulation Rough Set. We first
discuss the second type of two granulation approximations
of a target set by using two equivalence relations in an
information system.

Definition 14. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system and 𝐵,𝐴 ⊆ 𝐴𝑇. The operators 𝑆𝑅

𝐴+𝐵
and 𝑆𝑅

𝐴+𝐵
:

P(𝑈) → P(𝑈) are defined as follows. For all𝑋 ∈ P(𝑈),

𝐹𝑅
𝐴+𝐵
(𝑋) = {𝑢 | [𝑢]𝐴

⊆ 𝑋, [𝑢]𝐵
⊆ 𝑋} ,

𝐹𝑅
𝐴+𝐵
(𝑋) = {𝑢 | [𝑢]

𝐴
∩ 𝑋 ̸= 0, or [𝑢]𝐵 ∩ 𝑋 ̸= 0} .

(37)

We call them the second type of two granulation lower and
upper approximation operators, and we call 𝑆𝑅

𝐴+𝐵
(𝑋) and

𝑆𝑅
𝐴+𝐵
(𝑋) the second type of two granulation lower approxi-

mation set and upper approximation of𝑋, respectively.
Moreover, if 𝑆𝑅

𝐴+𝐵
(𝑋) ̸= 𝑆𝑅

𝐴+𝐵
(𝑋), we say that 𝑋 is the

second type of rough set with respect to two granulation
spaces 𝐴 and 𝐵. Otherwise, we say that 𝑋 is the second type
of definable set with respect to two granulation spaces 𝐴 and
𝐵.

The area of uncertainty or boundary region of this rough
set is defined as

Bnd𝑆
𝑅𝐴+𝐵
(𝑋) = 𝑆𝑅

𝐴+𝐵
(𝑋) − 𝑆𝑅

𝐴+𝐵
(𝑋) . (38)

It can be found that the second two granulation rough set
will be Pawlak’s rough set when two granulation spaces𝐴 and
𝐵 satisfy 𝐴 = 𝐵. To describe conveniently in our context, we
express the second type of two granulation rough set by using
the 2nd TGRS.

By the previos definition, it can be seen that the 2nd
TGRS lower and upper approximations are consistent with
Pawlak’s rough set. Furthermore, one can find that the 2nd
TGRS lower and upper approximations are defined through
using the equivalence classes induced by multi equivalence
relations in an information system, whereas Pawlak’s lower
and upper approximations are represented via those derived
by only one equivalence relation. And the 2nd TGRS lower
and upper approximations are dual with the 2nd TGRS lower
and upper approximations.

One canunderstand the second two granulation rough set
and show the difference between the 1st TGRS and Pawlak’s
rough set through Figure 3.

Just from Definition 14, we can obtain the following
properties in the 2nd TGRS in an information system.

Proposition 15. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵,𝐴 ⊆ 𝐴𝑇 and 𝑋 ⊆ 𝑈. Then the following properties
hold.

(SL
1
) 𝑆𝑅
𝐴+𝐵
(𝑋) ⊆ 𝑋 (Contraction),

SRA+B(X)

SRA+B(X)
RA

RB

X

U

Figure 3: The 2nd TGRS in an information system.

(SU
1
) 𝑆𝑅
𝐴+𝐵
(𝑋) ⊇ 𝑋 (Extension),

(SL
2
) 𝑆𝑅
𝐴+𝐵
(∼ 𝑋) =∼ 𝑆𝑅

𝐴+𝐵
(𝑋) (Duality),

(SU
2
) 𝑆𝑅
𝐴+𝐵
(∼ 𝑋) =∼ 𝑆𝑅

𝐴+𝐵
(𝑋) (Duality),

(SL
3
) 𝑆𝑅
𝐴+𝐵
(0) = 0 (Normality),

(SU
3
) 𝑆𝑅
𝐴+𝐵
(0) = 0 (Normality),

(SL
4
) 𝑆𝑅
𝐴+𝐵
(𝑈) = 𝑈 (Conormality),

(SU
4
) 𝑆𝑅
𝐴+𝐵
(𝑈) = 𝑈 (Conormality),

(SL
5
) 𝑆𝑅
𝐴+𝐵
(𝑋) = 𝑆𝑅

𝐵+𝐴
(𝑋) (Commutativity),

(SU
5
) 𝑆𝑅
𝐴+𝐵
(𝑋) = 𝑆𝑅

𝐵+𝐴
(𝑋) (Commutativity).

Proof. It is obvious that all terms hold when 𝐴 = 𝐵. When
𝐴 ̸= 𝐵, the proposition can be proved as follows.

(SL
1
) For any 𝑢 ∈ 𝑆𝑅

𝐴+𝐵
(𝑋), it can be known that [𝑢]

𝐴
⊆

𝑋 and [𝑢]
𝐵
⊆ 𝑋 by Definition 14. However, 𝑢 ∈ [𝑢]

𝐴
and

𝑢 ∈ [𝑢]
𝐵
. So we can have 𝑢 ∈ 𝑋. Hence, 𝑆𝑅

𝐴+𝐵
(𝑋) ⊆ 𝑋.

(SU
1
) For any 𝑢 ∈ 𝑋, we have 𝑢 ∈ [𝑢]

𝐴
and 𝑢 ∈ [𝑢]

𝐵
. So

[𝑢]
𝐴
∩𝑋 ̸= 0 and [𝑢]

𝐵
∩𝑋 ̸= 0, which imply that 𝑢 ∈ 𝐹𝑅

𝐴+𝐵
(𝑋).

Hence,𝑋 ⊆ 𝑆𝑅
𝐴+𝐵
(𝑋).

(SL
2
) For any 𝑢 ∈ 𝑆𝑅

𝐴+𝐵
(∼ 𝑋), then

𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(∼ 𝑋) ⇐⇒ [𝑢]𝐴

⊆∼ 𝑋, [𝑢]𝐵
⊆∼ 𝑋,

⇐⇒ [𝑢]𝐴
∩ 𝑋 = 0, [𝑢]𝐵

∩ 𝑋 = 0,

⇐⇒ 𝑢 ∉ 𝑆𝑅
𝐴+𝐵
(𝑋) ,

⇐⇒ 𝑢 ∈∼ 𝑆𝑅
𝐴+𝐵
(𝑋) .

(39)

Hence, 𝑆𝑅
𝐴+𝐵
(∼ X) =∼ 𝑆𝑅

𝐴+𝐵
(𝑋).
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(SU
2
) By (SL

2
), we have 𝑆𝑅

𝐴+𝐵
(𝑋) =∼ 𝑆𝑅

𝐴+𝐵
(∼ 𝑋). So it

can be obtained that ∼ 𝑆𝑅
𝐴+𝐵
(𝑋) = 𝑆𝑅

𝐴+𝐵
(∼ 𝑋).

(SL
3
) From (SL

1
), we have 𝑆𝑅

𝐴+𝐵
(0) ⊆ 0. Besides, it is well

known that 0 ⊆ 𝑆𝑅
𝐴+𝐵
(0). So, 𝑆𝑅

𝐴+𝐵
(0) = 0.

(SU
3
) If 𝑆𝑅

𝐴+𝐵
(0) ̸= 0, then there must exist a 𝑢 ∈

𝑆𝑅
𝐴+𝐵
(0). So, we can find that [𝑢]

𝐴
∩ 0 ̸= 0 or [𝑢]

𝐵
∩ 0 ̸= 0.

Obviously, this is a contradiction. Thus, 𝑆𝑅
𝐴+𝐵
(0) = 0.

(SL
4
) 𝑆𝑅
𝐴+𝐵
(𝑈) = 𝑆𝑅

𝐴+𝐵
(∼ 0) =∼ 𝑆𝑅

𝐴+𝐵
(0) =∼ 0 = 𝑈.

(SU
4
) 𝑆𝑅
𝐴+𝐵
(𝑈) = 𝑆𝑅

𝐴+𝐵
(∼ 0) =∼ 𝑆𝑅

𝐴+𝐵
(0) =∼ 0 = 𝑈.

(SL
5
) and (SU

5
) can be proved directly by Definition 14.

In order to discover the relationship between the 2nd
TGRS approximations of a single set and the 2nd TGRS
approximations of two sets described on the universe, the
following properties are given.

Proposition 16. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system,𝐵, 𝐴 ⊆ 𝐴𝑇 and𝑋,𝑌 ⊆ 𝑈.Then the following properties
hold.

(SL
6
) 𝑆𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑋) ∩ 𝑆𝑅

𝐴+𝐵
(𝑌) (L-

Multiplication),

(SU
6
) 𝑆𝑅
𝐴+𝐵
(𝑋∪𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑋)∪𝑆𝑅

𝐴+𝐵
(𝑌) (L-Addition),

(SL
7
) 𝑋 ⊆ 𝑌 ⇒ 𝑆𝑅

𝐴+𝐵
(𝑋) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑌) (Granularity),

(SU
7
) 𝑋 ⊆ 𝑌 ⇒ 𝑆𝑅

𝐴+𝐵
(𝑋) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑌) (Granularity),

(SL
8
) 𝑆𝑅
𝐴+𝐵
(𝑋∪𝑌) ⊇ 𝑆𝑅

𝐴+𝐵
(𝑋)∪𝑆𝑅

𝐴+𝐵
(𝑌) (U-Addition),

(SU
8
) 𝑆𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑋) ∩ 𝑆𝑅

𝐴+𝐵
(𝑌) (U-

Multiplication).

Proof. It is obvious that all terms hold when 𝐴 = 𝐵 or 𝑋 =
𝑌. When 𝐴 ̸= 𝐵 and 𝑋 ̸=𝑌, the proposition can be proved as
follows.

(SL
6
) For any 𝑢 ∈ 𝑆𝑅

𝐴+𝐵
(𝑋∩𝑌), by Definition 18 we have

𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⇐⇒ [𝑢]𝐴

⊆ (𝑋 ∩ 𝑌 ) , [𝑢]𝐵
⊆ (𝑋 ∩ 𝑌) ,

⇐⇒ [𝑢]𝐴
⊆ 𝑋, [𝑢]𝐴

⊆ 𝑌,

[𝑢]𝐵
⊆ 𝑋, [𝑢]𝐵

⊆ 𝑌

⇐⇒ [𝑢]𝐴
⊆ 𝑋, [𝑢]𝐵

⊆ 𝑋,

[𝑢]
𝐴
⊆ 𝑌, [𝑢]𝐵

⊆ 𝑌,

⇐⇒ 𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋) , 𝑢 ∈ 𝑆𝑅

𝐴+𝐵
(𝑌) ,

⇐⇒ 𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋) ∩ 𝑆𝑅

𝐴+𝐵
(𝑌) .

(40)

Hence, 𝑆𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑋) ∩ 𝑆𝑅

𝐴+𝐵
(𝑌).

(SU
6
) For any 𝑢 ∈ 𝑆𝑅

𝐴+𝐵
(𝑋∪𝑌), by Definition 18 we have

𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋 ∪ 𝑌)

⇐⇒ [𝑢]𝐴
∩ (𝑋 ∪ 𝑌 ) ̸= 0, or [𝑢]𝐵 ∩ (𝑋 ∪ 𝑌) ̸= 0,

⇐⇒ [𝑢]𝐴
∩ 𝑋 ̸= 0, or [𝑢]𝐴 ∩ 𝑌 ̸= 0,

or [𝑢]𝐵 ∩ 𝑋 ̸= 0, or [𝑢]𝐵 ∩ 𝑌 ̸= 0,

⇐⇒ [𝑢]𝐴
∩ 𝑋 ̸= 0, or [𝑢]𝐵 ∩ 𝑋 ̸= 0,

or [𝑢]𝐴 ∩ 𝑌 ̸= 0, or [𝑢]𝐵 ∩ 𝑌 ̸= 0,

⇐⇒ 𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋) , or 𝑢 ∈ 𝑆𝑅

𝐴+𝐵
(𝑌) ,

⇐⇒ 𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋) ∪ 𝑆𝑅

𝐴+𝐵
(𝑌) .

(41)

Hence, 𝑆𝑅
𝐴+𝐵
(𝑋 ∪ 𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑋) ∪ 𝑆𝑅

𝐴+𝐵
(𝑌).

(SL
7
) Since 𝑋 ⊆ 𝑌, one can have 𝑋 ∩ 𝑌 = 𝑋. Then,

𝑆𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑋). Besides, it can be found that

𝑆𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑋) ∩ 𝑆𝑅

𝐴+𝐵
(𝑌) by (SL

6
). So, we can

obtain that 𝑆𝑅
𝐴+𝐵
(𝑋) = 𝑆𝑅

𝐴+𝐵
(𝑋) ∩ 𝑆𝑅

𝐴+𝐵
(𝑌), that is to say

that 𝑆𝑅
𝐴+𝐵
(𝑋) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑌).

(SU
7
) Since 𝑋 ⊆ 𝑌, one can have 𝑋 ∪ 𝑌 = 𝑌. Then,

𝑆𝑅
𝐴+𝐵
(𝑋 ∪ 𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑌). Besides, it can be found that

𝑆𝑅
𝐴+𝐵
(𝑋 ∪ 𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑋) ∪ 𝑆𝑅

𝐴+𝐵
(𝑌) by (SU

6
). So, we can

obtain that 𝑆𝑅
𝐴+𝐵
(𝑌) = 𝑆𝑅

𝐴+𝐵
(𝑋) ∪ 𝑆𝑅

𝐴+𝐵
(𝑌), that is to say

that 𝑆𝑅
𝐴+𝐵
(𝑋) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑌).

(SU
8
) Since𝑋 ⊆ 𝑋 ∪ 𝑌 and 𝑌 ⊆ 𝑋 ∪ 𝑌, by (SL

7
) it can be

obtained that

𝑆𝑅
𝐴+𝐵
(𝑋) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑋 ∪ 𝑌) ,

𝑆𝑅
𝐴+𝐵
(𝑌) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑋 ∪ 𝑌) .

(42)

So, we have 𝑆𝑅
𝐴+𝐵
(𝑋) ∪ 𝑆𝑅

𝐴+𝐵
(𝑌) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑋 ∪ 𝑌).

(SU
8
) Since𝑋∩𝑌 ⊆ 𝑋 and𝑋∩𝑌 ⊆ 𝑌, by (SU

7
) it can be

obtained that

𝑆𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑋) ,

𝑆𝑅
𝐴+𝐵
(𝑌 ∩ 𝑌) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑌) .

(43)

So, we have 𝑆𝑅
𝐴+𝐵
(𝑋 ∩ 𝑌) ⊆ 𝑆𝑅

𝐴+𝐵
(𝑋) ∩ 𝑆𝑅

𝐴+𝐵
(𝑋).

The proposition was proved.

Example 17 (continued from Example 4). In Example 4, we
have known that

𝑅
𝐿
= {{𝑢
1
, 𝑢
7
} , {𝑢
2
, 𝑢
8
} , {𝑢
3
, 𝑢
4
} , {𝑢
5
, 𝑢
6
}} ,

𝑅
𝑃
= {{𝑢
1
, 𝑢
2
} , {𝑢
3
, 𝑢
4
, 𝑢
5
} , {𝑢
6
, 𝑢
7
, 𝑢
8
}} ,

𝑅
𝐿∪𝑃
= {{𝑢
1
} , {𝑢
2
} , {𝑢
3
, 𝑢
4
} , {𝑢
5
} , {𝑢
6
} , {𝑢
7
} , {𝑢
8
}} .

(44)

And, if we take𝑋 = {𝑢
1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} again, then by computing

we have

𝑆𝑅
𝐿+𝑃
(𝑋) = {𝑢

2
} ,

𝑆𝑅
𝐿+𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} .

(45)
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However, the lower approximation and upper approxi-
mation of 𝑋 based on Pawlak’s rough set were obtained in
Example 4 as follows:

𝑅
𝐿
(𝑋) = {𝑢

2
, 𝑢
8
} ,

𝑅
𝐿
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} ,

𝑅
𝑃
(𝑋) = {𝑢

1
, 𝑢
2
} ,

𝑅
𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
7
, 𝑢
8
} ,

𝑅
𝐿∪𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} ,

𝑅
𝐿∪𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} .

(46)

So, one can check the following properties.

𝑅
𝐿
(𝑋) ∩ 𝑅

𝑃
(𝑋) = 𝐹𝑅

𝐿+𝑃
(𝑋) ,

𝑅
𝐿
(𝑋) ∪ 𝑅

𝑃
(𝑋) = 𝑆𝑅

𝐿+𝑃
(𝑋) ,

𝐹𝑅
𝐿+𝑃
(𝑋) ⊆ 𝑅

𝐿∪𝑃
(𝑋) ⊆ 𝑋 ⊆ 𝑅

𝐿∪𝑃
(𝑋) ⊆ 𝐹𝑅

𝐿+𝑃
(𝑋) .

(47)

4.2. The Second Type of Multiple Granulation Rough Set. In
this subsection, we will consider the second type of multiple
granulation approximations of a target set by using multiple
equivalence relations in an information system.

Definition 18. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑠
⊆ 𝐴𝑇 attribute subsets (𝑠 ≤ 2|𝐴𝑇|),

and 𝑅
𝐴1
, 𝑅
𝐴2
, . . . , 𝑅

𝐴𝑠
equivalence relations, respectively.The

operators 𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
and 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
: P(𝑈) → P(𝑈) are defined

as follows. For all𝑋 ∈ P(𝑈),

𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = {𝑢 |

𝑚

⋀

𝑖=1

([𝑢]𝐴𝑖
⊆ 𝑋)} ,

𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = {𝑢 |

𝑚

⋁

𝑖=1

([𝑢]𝐴𝑖
∩ 𝑋 ̸= 0) } ,

(48)

where “∨” means “some” and “∧” means “all.” We call
them the second type of multiple granulation lower and
upper approximation operators, and we call 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)

and 𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) the second type of multiple granulation

lower approximation set and upper approximation of 𝑋,
respectively.

Moreover, if 𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ̸= 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋), we say that 𝑋

is the second type of rough set with respect to multiple
granulation spaces 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑠
. Otherwise, we say that

𝑋 is the second type of definable set with respect to these
multiple granulation spaces.

Similarly, the area of uncertainty or boundary region of
this rough set is defined as

Bnd𝑆
𝑅
∑
𝑠

𝑖=1
𝐴𝑖

(𝑋) = 𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) − 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) . (49)

To describe conveniently in our context, we express the
second type of multiple granulation rough set by using

the 2nd MGRS. Moreover, one can obtain the following
properties of the 2nd MGRS approximations.

Proposition 19. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system,𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . 𝑠, and𝑋 ⊆ 𝑈. Then the following

properties hold.
(SL1) 𝑆𝑅∑𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑋 (Contraction),

(SU1) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(𝑋) ⊇ 𝑋 (Extension),

(SL2) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(∼ 𝑋) =∼ 𝑆𝑅

∑
s
i=1 𝐴𝑖
(𝑋) (Duality),

(SU2) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(∼ 𝑋) =∼ 𝑆R

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) (Duality),

(SL3) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(0) = 0 (Normality),

(SU3) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(0) = 0 (Normality),

(SL4) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(𝑈) = 𝑈 (Conormality),

(SU4) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(𝑈) = 𝑈 (Conormality),

(SL5) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(𝑋) = 𝑆𝑅

𝐵+𝐴
(𝑋) (Commutativity),

(SU5) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(𝑋) = 𝑆𝑅

𝐵+𝐴
(𝑋) (Commutativity).

Proof. The proof of these items is similar to Proposition 15.

Proposition 20. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . 𝑠, and 𝑋,𝑌 ⊆ 𝑈. Then the

following properties hold.

(SL6) 𝑆𝑅∑𝑠
𝑖=1
𝐴𝑖
(𝑋 ∩ 𝑌) ⊆ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ∩ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌)

(L-Multiplication) ,
(SU6) 𝑆𝑅∑𝑠

𝑖=1
𝐴𝑖
(𝑋 ∪ 𝑌) ⊇ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ∪ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌)

(L-Addition) ,
(SL7) 𝑋 ⊆ 𝑌 ⇒ 𝑆𝑅∑𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌)

(Granularity) ,
(SU7) 𝑋 ⊆ 𝑌 ⇒ 𝑆𝑅∑𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌)

(Granularity) ,
(SL8) 𝑆𝑅∑𝑠

𝑖=1
𝐴𝑖
(𝑋 ∪ 𝑌) ⊇ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ∪ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌)

(U-Addition) ,
(SU8) 𝑆𝑅∑𝑠

𝑖=1
𝐴𝑖
(𝑋 ∩ 𝑌) ⊆ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ∩ 𝑆𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑌)

(U-Multiplication) .

Proof. The proof of these items is similar to Proposition 16.

Next, we will investigate several elementary measures in
the 2nd MGRS and their properties.

Similarly, we introduce the accuracy measure to the 2nd
MGRS as follows.

Definition 21. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . 𝑠 and 𝑋 ⊆ 𝑈. The 2nd rough

measure of𝑋 by ∑𝑠
𝑖=1
𝐴
𝑖
is defined as

𝜌

𝑆

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) = 1 −









𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)















𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)







,
(50)

where𝑋 ̸= 0.

From the definitions, one can derive the following prop-
erties.
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Proposition 22. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . 𝑠, and𝑋 ⊆ 𝑈. Then

𝜌

𝑆

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≥ 𝜌

𝐴𝑖
(𝑋) ≥ 𝜌

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋) . (51)

Proof. By Corollary 34, we have

𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑅

𝐴𝑖
(𝑋) ,

𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊇ 𝑅

𝐴𝑖
(𝑋) .

(52)

And, we have known that

𝑅
𝐴𝑖
(𝑋) ⊆ 𝑅

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋) ,

𝑅
𝐴𝑖
(𝑋) ⊇ 𝑅

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋) .

(53)

So, the following holds:









𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)















𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋)







≤








𝑅
𝐴𝑖
(𝑋)














𝑅
𝐴𝑖
(𝑋)







≤









𝑅
∪
𝑠

𝑖=1
𝐴𝑖
(𝑋)















𝑅
∪
𝑠

𝑖=1
𝐴𝑖
(𝑋)







.
(54)

Hence, by the Definition 21, we have

𝜌

𝑆

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≥ 𝜌

𝐴𝑖
(𝑋) ≥ 𝜌

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋) . (55)

The proof was completed.

Example 23 (continued fromExamples 4 and 17). Computing
the 2nd rough measures of 𝑋 = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} in the system

given in Example 4. By Example 17, it follows that

𝜌
𝐿
(𝑋) = 1 −







𝑅
𝐿
(𝑋)













𝑅
𝐿
(𝑋)







=

2

3

,

𝜌
𝑃
(𝑋) = 1 −







𝑅
𝑃
(𝑋)













𝑅
𝑃
(𝑋)







=

3

5

,

𝜌
𝐿∪𝑃
(𝑋) = 1 −







𝑅
𝐿∪𝑃
(𝑋)













𝑅
𝐿∪𝑃
(𝑋)







= 0,

𝜌

𝑆

𝐿+𝑃
(𝑋) = 1 −







𝑆𝑅
𝐿+𝑃
(𝑋)













𝑆𝑅
𝐿+𝑃
(𝑋)







=

5

6

.

(56)

Clearly, it follows from the earlier computation that

𝜌

𝑆

𝐿+𝑃
(𝑋) ≥ 𝜌

𝐿
(𝑋) ≥ 𝜌

𝐿∪𝑃
(𝑋) ,

𝜌

𝑆

𝐿+𝑃
(𝑋) ≥ 𝜌

𝑃
(𝑋) ≥ 𝜌

𝐿∪𝑃
(𝑋) .

(57)

Similar to the 1st MGRS, in the following we will discuss
the 2nd degree of dependence.

Definition 24. LetI = (𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓) be a decision table,
𝐴
𝑖
⊆ 𝐶, 𝑖 = 1, 2, . . . , 𝑠, and {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑘
} all decision

classes induced by decision attribute 𝑑. Approximation qual-
ity of 𝑑 by ∑𝑠

𝑖=1
𝐴
𝑖
, called the 2nd degree of dependence, is

defined as

𝛾
𝑆
(

𝑠

∑

𝑖=1

𝐴
𝑖
, 𝑑) =

1

|𝑈|

𝑘

∑

𝑗=1

(









𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
)









) . (58)

Moreover, we have the following properties with resect to
the above definition.

Proposition 25. Let I = (𝑈, 𝐶 ∪ {𝑑}, 𝑉, 𝑓) be a decision
table,𝐴

𝑖
⊆ 𝐶, 𝑖 = 1, 2, . . . , 𝑠, and {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑘
} all decision

classes induced by decision attribute d. Then

𝛾
𝑆
(

𝑠

∑

𝑖=1

𝐴
𝑖
, 𝑑) ≤ 𝛾 (𝐴

𝑖
, 𝑑) ≤ 𝛾(

𝑠

⋃

𝑖=1

𝐴
𝑖
, 𝑑) . (59)

Proof. For every𝐷
𝑗
, 𝑗 = 1, 2, . . . , 𝑘, by Corollaries 32 and 40,

we have

𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
) ⊆ 𝑅
𝐴𝑖
(𝐷
𝑗
) ⊆ 𝑅
∪
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
) . (60)

So,









𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
)









≤








𝑅
𝐴𝑖
(𝐷
𝑗
)








≤









𝑅
∪
𝑠

𝑖=1
𝐴𝑖
(𝐷
𝑗
)









. (61)

Hence, by the Definition 24, we have

𝛾
𝑆
(

𝑠

∑

𝑖=1

𝐴
𝑖
, 𝑑) ≤ 𝛾 (𝐴

𝑖
, 𝑑) ≤ 𝛾(

𝑠

⋃

𝑖=1

𝐴
𝑖
, 𝑑) . (62)

The proof was completed.

Example 26 (continued fromExamples 4 and 17). Computing
the 2nd degree of dependence of𝑋 = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
}.

In Example 10, we have known that𝑈/𝐷 = {𝐷
𝑌
, 𝐷
𝑁
} and

𝛾 (𝐿,𝐷) =

1

2

,

𝛾 (𝑃,𝐷) =

3

4

,

𝛾 (𝐿 ∪ 𝑃,𝐷) = 1.

(63)

Moreover, the following can be computed by Table 1 and
the results of Example 17,

𝑆𝑅
𝐿+𝑃
(𝐷
𝑌
) = {𝑢

8
} ,

𝑆𝑅
𝐿+𝑃
(𝐷
𝑁
) = {𝑢

3
, 𝑢
4
} .

(64)

So, we have

𝛾
𝑆
(𝐿 + 𝑃,𝐷) =

1

|𝑈|

(







𝑆𝑅
𝐿+𝑃
(𝐷
𝑌
)







+







𝑆𝑅
𝐿+𝑃
(𝐷
𝑁
)







) =

3

8

.

(65)
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Hence, it can be found that

𝛾
𝑆
(𝐿 + 𝑃,𝐷) ≤ 𝛾 (𝐿,𝐷) ≤ 𝛾 (𝐿 ∪ 𝑃,𝐷) ,

𝛾
𝑆
(𝐿 + 𝑃,𝐷) ≤ 𝛾 (𝑃,𝐷) ≤ 𝛾 (𝐿 ∪ 𝑃,𝐷) .

(66)

5. Difference and Relationship among
Pawlak’s Rough Set, and the 1st MGRS,
the 2nd MGRS

From the previos sections, we have known the concepts and
properties of the 1st MGRS and the 2nd MGRS. We will
investigate the difference and relationship among Pawlak’s
rough set, the 1st MGRS, and the 2nd MGRS in this section.

Proposition 27. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵,𝐴 ⊆ 𝐴𝑇, and 𝑋 ⊆ 𝑈. Then, the following properties
hold.

(1) 𝐹𝑅
𝐴+𝐵
(𝑋) ⊆ 𝑅

𝐴∪𝐵
(𝑋),

(2) 𝐹𝑅
𝐴+𝐵
(𝑋) ⊇ 𝑅

𝐴∪𝐵
(𝑋).

Proof. (1) For any 𝑢 ∈ 𝐹𝑅
𝐴+𝐵
(𝑋), it can be known that [𝑢]

𝐴
⊆

𝑋 or [𝑢]
𝐵
⊆ 𝑋 by Definition 1. On the other hand, since 𝐴 ⊆

𝐴 ∪ 𝐵 and 𝐵 ⊆ 𝐴 ∪ 𝐵, we have [𝑢]
𝐴∪𝐵
⊆ [𝑢]
𝐴
and [𝑢]

𝐴∪𝐵
⊆

[𝑢]
𝐵
. So we can obtain that [𝑢]

𝐴∪𝐵
⊆ 𝑋. That is to say that

𝑢 ∈ 𝑅
𝐴∪𝐵
(𝑋). Hence, 𝐹𝑅

𝐴+𝐵
(𝑋) ⊆ 𝑅

𝐴∪𝐵
(𝑋).

(2) For 𝐵, 𝐴 ⊆ 𝐴𝑇 and 𝑋 ⊆ 𝑈, we have 𝑅
𝐴∪𝐵
(𝑋) =∼

𝑅
𝐴∪𝐵
(∼ 𝑋).Then, it can be got that𝐹𝑅

𝐴+𝐵
(∼ 𝑋) ⊆ 𝑅

𝐴∪𝐵
(∼ 𝑋)

by the conclusion of (1). So, one can obtain that ∼ 𝐹𝑅
𝐴+𝐵
(∼

𝑋) ⊇∼ 𝑅
𝐴∪𝐵
(∼ 𝑋). Hence, 𝐹𝑅

𝐴+𝐵
(𝑋) ⊇ 𝑅

𝐴∪𝐵
(𝑋).

The proof was completed.

Corollary 28. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , 𝑠, and 𝑋 ⊆ 𝑈. Then, the

following properties hold.

(1) 𝐹𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋) ⊆ 𝑅

∪
𝑠

𝑖
𝐴𝑖
(𝑋),

(2) 𝐹𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋) ⊇ 𝑅

∪
𝑠

𝑖
𝐴𝑖
(𝑋).

Proposition 29. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵,𝐴 ⊆ 𝐴𝑇, and 𝑋 ⊆ 𝑈. Then, the following properties
hold.

(1) 𝑆𝑅
𝐴+𝐵
(𝑋) ⊆ 𝑅

𝐴∪𝐵
(𝑋),

(2) 𝑆𝑅
𝐴+𝐵
(𝑋) ⊇ 𝑅

𝐴∪𝐵
(𝑋).

Proof. (1) For any 𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋), it can be known that [𝑢]

𝐴
⊆

𝑋 and [𝑢]
𝐵
⊆ 𝑋 by Definition 14. On the other hand, since

𝐴 ⊆ 𝐴 ∪ 𝐵 and 𝐵 ⊆ 𝐴 ∪ 𝐵, we have [𝑢]
𝐴∪𝐵
⊆ [𝑢]

𝐴
and

[𝑢]
𝐴∪𝐵
⊆ [𝑢]
𝐵
. So we can obtain that [𝑢]

𝐴∪𝐵
⊆ 𝑋. That is to

say that 𝑢 ∈ 𝑅
𝐴∪𝐵
(𝑋). Hence, 𝑆𝑅

𝐴+𝐵
(𝑋) ⊆ 𝑅

𝐴∪𝐵
(𝑋).

(2) For 𝐵, 𝐴 ⊆ 𝐴𝑇, and 𝑋 ⊆ 𝑈, we have 𝑅
𝐴∪𝐵
(𝑋) =∼

𝑅
𝐴∪𝐵
(∼ 𝑋). Then, it can be got that 𝑆𝑅

𝐴+𝐵
(∼ 𝑋) ⊆

𝑅
𝐴∪𝐵
(∼ 𝑋) by the conclusion of (1). So, one can obtain that

∼ 𝑆𝑅
𝐴+𝐵
(∼ 𝑋) ⊇∼ 𝑅

𝐴∪𝐵
(∼ 𝑋). Hence, 𝑆𝑅

𝐴+𝐵
(𝑋) ⊇ 𝑅

𝐴∪𝐵
(𝑋).

The proof was completed.

Corollary 30. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, i = 1, 2, . . . , 𝑠, and 𝑋 ⊆ 𝑈. Then, the

following properties hold.

(1) 𝑆𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋) ⊆ 𝑅

∪
𝑠

𝑖
𝐴𝑖
(𝑋),

(2) 𝑆𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋) ⊇ 𝑅

∪
𝑠

𝑖
𝐴𝑖
(𝑋).

Proposition 31. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵,𝐴 ⊆ 𝐴𝑇, and 𝑋 ⊆ 𝑈. Then, the following properties
hold.

(1) 𝐹𝑅
𝐴+𝐵
(𝑋) = 𝑅

𝐴
(𝑋) ∪ 𝑅

𝐵
(𝑋),

(2) 𝐹𝑅
𝐴+𝐵
(𝑋) = 𝑅

𝐴
(𝑋) ∩ 𝑅

𝐵
(𝑋).

Proof. (1) For any 𝑢 ∈ 𝐹𝑅
𝐴+𝐵
(𝑋), we have

𝑢 ∈ 𝐹𝑅
𝐴+𝐵
(𝑋) ⇐⇒ [𝑢]𝐴

⊆ 𝑋, or [𝑢]𝐵 ⊆ 𝑋,

⇐⇒ 𝑢 ∈ 𝑅
𝐴
(𝑋) , or 𝑢 ∈ 𝑅

𝐵
(𝑋) ,

⇐⇒ 𝑢 ∈ 𝑅
𝐴
(𝑋) ∪ 𝑅

𝐵
(𝑋) .

(67)

Hence, 𝐹𝑅
𝐴+𝐵
(𝑋) = 𝑅

𝐴
(𝑋) ∪ 𝑅

𝐵
(𝑋).

(2) For any 𝑢 ∈ 𝐹𝑅
𝐴+𝐵
(𝑋), we have

𝑢 ∈ 𝐹𝑅
𝐴+𝐵
(𝑋) ⇐⇒ [𝑢]𝐴

∩ 𝑋 ̸= 0, [𝑢]𝐵
∩ 𝑋 ̸= 0

⇐⇒ 𝑢 ∈ 𝑅
𝐴
(𝑋) , 𝑢 ∈ 𝑅

𝐵
(𝑋)

⇐⇒ 𝑢 ∈ 𝑅
𝐴
(𝑋) ∩ 𝑅

𝐵
(𝑋) .

(68)

Hence, 𝐹𝑅
𝐴+𝐵
(𝑋) = 𝑅

𝐴
(𝑋) ∩ 𝑅

𝐵
(𝑋).

The proof was completed.

Corollary 32. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , 𝑠 and 𝑋 ⊆ 𝑈. Then, the

following properties hold.

(1) 𝐹𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋) = ⋃

𝑠

𝑖=1
𝑅
𝐴𝑖
(𝑋),

(2) 𝐹𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋) = ⋂

𝑠

𝑖=1
𝑅
𝐴𝑖
(𝑋).

Proposition 33. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵,𝐴 ⊆ 𝐴𝑇, and 𝑋 ⊆ 𝑈. Then, the following properties
hold.

(1) 𝑆𝑅
𝐴+𝐵
(𝑋) = 𝑅

𝐴
(𝑋) ∩ 𝑅

𝐵
(𝑋),

(2) 𝑆𝑅
𝐴+𝐵
(𝑋) = 𝑅

𝐴
(𝑋) ∪ 𝑅

𝐵
(𝑋).

Proof. (1) For any 𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋), we have

𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋) ⇐⇒ [𝑢]𝐴

⊆ 𝑋, [𝑢]𝐵
⊆ 𝑋,

⇐⇒ 𝑢 ∈ 𝑅
𝐴
(𝑋) , 𝑢 ∈ 𝑅

𝐵
(𝑋) ,

⇐⇒ 𝑢 ∈ 𝑅
𝐴
(𝑋) ∩ 𝑅

𝐵
(𝑋) .

(69)

Hence, 𝑆𝑅
𝐴+𝐵
(𝑋) = 𝑅

𝐴
(𝑋) ∩ 𝑅

𝐵
(𝑋).
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(2) For any 𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋), we have

𝑢 ∈ 𝑆𝑅
𝐴+𝐵
(𝑋) ⇐⇒ [𝑢]𝐴

∩ X ̸= 0, or [𝑢]𝐵 ∩ 𝑋 ̸= 0,

⇐⇒ 𝑢 ∈ 𝑅
𝐴
(𝑋) , or 𝑢 ∈ 𝑅

𝐵
(𝑋) ,

⇐⇒ 𝑢 ∈ 𝑅
𝐴
(𝑋) ∪ 𝑅

𝐵
(𝑋) .

(70)

Hence, 𝑆𝑅
𝐴+𝐵
(𝑋) = 𝑅

𝐴
(𝑋) ∪ 𝑅

𝐵
(𝑋).

The proof was completed.

Corollary 34. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , 𝑠, and 𝑋 ⊆ 𝑈. Then, the

following properties hold.

(1) 𝑆𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋) = ⋂

𝑠

𝑖=1
𝑅
𝐴𝑖
(𝑋),

(2) 𝑆𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋) = ⋃

𝑠

𝑖=1
𝑅
𝐴𝑖
(𝑋).

Proposition 35. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵, 𝐴 ⊆ 𝐴𝑇, and 𝑋,𝑌 ⊆ 𝑈. Then, the following
properties hold.

(1) 𝐹𝑅
𝐴+𝐵
(𝑋∩𝑌) = (𝑅

𝐴
(𝑋)∩𝑅

𝐴
(𝑌))∪ (𝑅

𝐵
(𝑋)∩𝑅

𝐵
(𝑌)),

(2) 𝐹𝑅
𝐴+𝐵
(𝑋∪𝑌) = (𝑅

𝐴
(𝑋)∪𝑅

𝐴
(𝑋))∩ (𝑅

𝐵
(𝑋)∪𝑅

𝐵
(𝑌)).

Proof. It can be obtained easily by Proposition 31.

Corollary 36. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , 𝑠, and 𝑋,𝑌 ⊆ 𝑈. Then, the

following properties hold.

(1) 𝐹𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋 ∩ 𝑌) = ⋃

𝑠

𝑖=1
(𝑅
𝐴𝑖
(𝑋) ∩ 𝑅

𝐴𝑖
(𝑌)),

(2) 𝐹𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋 ∪ 𝑌) = ⋂

𝑠

𝑖=1
(𝑅
𝐴𝑖
(𝑋) ∪ 𝑅

𝐴𝑖
(𝑌)).

Proposition 37. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵, 𝐴 ⊆ 𝐴𝑇, and 𝑋,𝑌 ⊆ 𝑈. Then, the following
properties hold.

(1) 𝑆𝑅
𝐴+𝐵
(𝑋∩𝑌) = (𝑅

𝐴
(𝑋) ∩𝑅

𝐴
(𝑌)) ∩ (𝑅

𝐵
(𝑋) ∩𝑅

𝐵
(𝑌)),

(2) 𝑆𝑅
𝐴+𝐵
(𝑋∪𝑌) = (𝑅

𝐴
(𝑋)∪𝑅

𝐴
(𝑋))∪ (𝑅

𝐵
(𝑋)∪𝑅

𝐵
(𝑌)).

Proof. It can be obtained directly by Proposition 33.

Corollary 38. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , 𝑠, and 𝑋,𝑌 ⊆ 𝑈. Then, the

following properties hold.

(1) 𝑆𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋 ∩ 𝑌) = ⋂

𝑠

𝑖=1
(𝑅
𝐴𝑖
(𝑋) ∩ 𝑅

𝐴𝑖
(𝑌)),

(2) 𝑆𝑅
∑
𝑠

𝑖
𝐴𝑖
(𝑋 ∪ 𝑌) = ⋃

𝑠

𝑖=1
(𝑅
𝐴𝑖
(𝑋) ∪ 𝑅

𝐴𝑖
(𝑌)).

Proposition 39. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵,𝐴 ⊆ 𝐴𝑇, and 𝑋 ⊆ 𝑈. Then, the following properties
hold.

(1) 𝑆𝑅
𝐴+𝐵
(𝑋) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋) ⊆ 𝑅

𝐴∪𝐵
(𝑋),

(2) 𝑆𝑅
𝐴+𝐵
(𝑋) ⊇ 𝐹𝑅

𝐴+𝐵
(𝑋) ⊇ 𝑅

𝐴∪𝐵
(𝑋).

Proof. It can be obtained easily by Definitions 1 and 14 and
Propositions 27 and 29.

Corollary 40. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , 𝑠, and 𝑋 ⊆ 𝑈. Then, the

following properties hold.

(1) 𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑅

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋),

(2) 𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊇ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊇ 𝑅

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋).

Proposition 41. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐵,𝐴 ⊆ 𝐴𝑇, and 𝑋 ⊆ 𝑈. Then, the following properties
hold.

(1) 𝑆𝑅
𝐴+𝐵
(𝑋) ⊆ 𝑅

𝐴
(𝑋)(or 𝑅

𝐵
(𝑋)) ⊆ 𝐹𝑅

𝐴+𝐵
(𝑋),

(2) 𝑆𝑅
𝐴+𝐵
(𝑋) ⊇ 𝑅

𝐴
(𝑋)(or 𝑅

𝐵
(𝑋)) ⊇ 𝐹𝑅

𝐴+𝐵
(𝑋).

Proof. It can be obtained easily by Propositions 31 and 33

Corollary 42. Let I = (𝑈, 𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , 𝑠, and 𝑋 ⊆ 𝑈. Then, the

following properties hold.

(1) 𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑅

𝐴𝑖
(𝑋) ⊆ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊆ 𝑅

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋),

(2) 𝑆𝑅
∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊇ 𝑅

𝐴𝑖
(𝑋) ⊇ 𝐹𝑅

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ⊇ 𝑅

∪
𝑠

𝑖=1
𝐴𝑖
(𝑋).

Proposition 43. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , 𝑠, and 𝑋 ⊆ 𝑈. Then

𝜌

𝑆

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≥ 𝜌Ai

(𝑋) ≥ 𝜌

𝐹

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) ≥ 𝜌

∑
𝑠

𝑖=1
𝐴𝑖
(𝑋) . (71)

Proof. It can be obtained directly by Definitions 8 and 21 and
Corollary 42.

Proposition 44. Let I = (𝑈,𝐴𝑇,𝑉, 𝑓) be an information
system, 𝐴

𝑖
⊆ 𝐴𝑇, 𝑖 = 1, 2, . . . , s, and𝑋 ⊆ 𝑈. Then

𝛾
𝑆
(

𝑠

∑

𝑖=1

𝐴
𝑖
, 𝑑) ≤ 𝛾 (𝐴

𝑖
, 𝑑)

≤ 𝛾
𝐹
(

𝑠

∑

𝑖=1

𝐴
𝑖
, 𝑑) ≤ 𝛾(

𝑠

⋃

𝑖=1

𝐴
𝑖
, 𝑑) .

(72)

Proof. It can be obtained directly by Definitions 11 and 24 and
Corollary 42.

One can understand the relationship and difference
presented by the previous propositions though the following
Figures 4 and 5.
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SRA+B(X)
FRA+B(X)
RA∪B(X)

Figure 4: Difference and relationship of lower approximations
among the 1st, the 2nd TGRS, and classical RS.

RA

RB

X

U

SRA+B(X)
FRA+B(X)
RA∪B(X)

Figure 5: Difference and relationship of upper approximations
among the 1st, the 2nd TGRS, and classical RS.

Example 45 (continued from Examples 4 and 17). In Exam-
ples 4 and 17, we have obtained that

𝑅
𝐿∪𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} ,

𝑅
𝐿∪𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
8
} ,

𝐹𝑅
𝐿+𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
8
} ,

𝐹𝑅
𝐿+𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
6
, 𝑢
7
, 𝑢
8
}

𝑆𝑅
𝐿+𝑃
(𝑋) = {𝑢

2
} ,

𝑆𝑅
𝐿+𝑃
(𝑋) = {𝑢

1
, 𝑢
2
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
} .

(73)

Obviously, we have

𝑆𝑅
𝐿+𝑃
(𝑋) ⊆ 𝐹𝑅

𝐿+𝑃
(𝑋) ⊆ 𝑅

𝐿∪𝑃
(𝑋)

⊆ 𝑋 ⊆ 𝑅
𝐿∪𝑃
(𝑋) ⊆ 𝐹𝑅

𝐿+𝑃
(𝑋) ⊆ 𝑆𝑅

𝐿+𝑃
(𝑋) .

(74)

6. Conclusion

The original rough set model cannot be used to deal with
the information systems with complicated context. Nev-
ertheless, by relaxing the indiscernibility relation to more
general binary relations, many improved rough set models
have been successfully applied into the information systems
with complicated context for knowledge acquisition. The
contribution of this corresponding paper is to extendPawlak’s
single granulation rough set model and Qian’s multigran-
ulation rough set model (MGRS) to two new types of the
multiple granulation rough set model. In this paper, two
new types of the multiple granulation rough set model have
been constructed, respectively, based onmultiple equivalence
relations for an information system. In the two new types
of multiple granulations rough set model, a target concept
was approximated from two different kinds of views by using
the equivalence classes induced from multiple granulations.
In particular, some important properties of the two types of
MGRS were investigated and have shown the relationship
and difference among Pawlak’s rough set, Qian’s MGRS,
and two new types of MGRS. Moreover, several important
measures have been developed in two types of MGRS,
such as rough measure and quality of approximation. From
the contribution, it can be found that when two attribute
sets in information systems possess a contradiction or an
inconsistent relationship, or when efficient computation is
required, the two new types of MGRS will display their
advantage for rule extraction and knowledge discovery.

In our further research, we will extend other rough set
methods in the context ofmultiple granulations such as viable
precision rough setmodel and rough set induced by covering.
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